

| Reg.                                             | No:                                                                                        |   |  |  |      |       |        |        |       |                   |   | ]                 |            |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|---|--|--|------|-------|--------|--------|-------|-------------------|---|-------------------|------------|--|
|                                                  | SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR                                   |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | (AUTONOMOUS)                                                                               |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | B.Tech II Year I Semester Supplementary Examinations Nov/Dec 2019                          |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  |                                                                                            |   |  |  | STRE | INGT  | H OF   | MAT    | ERIAI | _S-I              |   |                   |            |  |
|                                                  | (Civil Engineering)                                                                        |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
| Time:                                            | 3 hours                                                                                    |   |  |  |      |       |        |        |       |                   |   | Max. Marks: 60    |            |  |
| (Answer all Five Units $5 \times 12 = 60$ Marks) |                                                                                            |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
| UNIT-I                                           |                                                                                            |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
| 1                                                | 1 a Define Stress, Strain and Young's modulus                                              |   |  |  |      |       |        |        |       |                   |   |                   | <b>6M</b>  |  |
|                                                  | <b>b</b> Fid the Young's Modulus of a brass rod of diameter 25 mm ad of length 300 mm      |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | subjected to a tensile load of 60 kN when the extension of the rod is equal to 0.2 m.      |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
| 2                                                | <b>UK</b><br>Derive the relation between Young's Modulus (F) Rigidity Modulus (G) and Rulk |   |  |  |      |       |        |        |       |                   |   |                   | 10M        |  |
| 4                                                | Modulus (K).                                                                               |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | UNIT-II                                                                                    |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
| 3                                                | B Draw shear force and bending moment diagram for cantilever beam subject                  |   |  |  |      |       |        |        |       |                   |   |                   | <b>10M</b> |  |
|                                                  | uniformly distributed load.                                                                |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | OR                                                                                         |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  | Draw shear force and bending moment diagram for the following beam.                        |   |  |  |      |       |        |        |       |                   |   |                   | 10M        |  |
|                                                  |                                                                                            | 1 |  |  |      | 1.5 k | Ņ/m    |        |       | 1 <sup>2 ki</sup> | N | 1                 |            |  |
| 4                                                |                                                                                            |   |  |  |      |       |        |        |       |                   | Л |                   |            |  |
|                                                  | 1.5 m 0.5 m                                                                                |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  |                                                                                            |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  |                                                                                            |   |  |  |      |       | UN     | IT-III | ſ     |                   |   |                   |            |  |
| 5                                                | A rolled steel joist of I section has a dimensions as shown in fig. This beam of I         |   |  |  |      |       |        |        |       |                   |   |                   | <b>10M</b> |  |
|                                                  | section carries a uniformly distributed load of 40 kN /m run on a span of                  |   |  |  |      |       |        |        |       |                   |   | n a span of 10 m, |            |  |
|                                                  | calculate the maximum stress produced due to bending.                                      |   |  |  |      |       |        |        |       |                   |   |                   |            |  |
|                                                  |                                                                                            |   |  |  |      | 20    | 0 mm • |        |       |                   |   |                   |            |  |



6 A beam is simply supported and carries a uniformly distributed load of 40KN/m run over the whole span. The section of the beam is rectangular having depth as 500mm. If the maximum stress in the material of the beam is 120 N/mm<sup>2</sup> and moment of inertia of the section is 7 x 10<sup>8</sup> mm4, find the span of the beam.



## UNIT-IV

7 A beam 6 m long, simply supported at its ends, is carrying a point load of 50 kN 10M at its center. The moment of inertia of the beam is given as equal to  $78 \times 10^6$  mm4 and if E for the material of the beam =  $2.1 \times 10^5$  N/mm<sup>2</sup>, calculate: (i) Deflection at the Centre of the beam and (ii) slope at the supports.

## OR

8 A cantilever of length 3m carries a uniformly distributed load over the entire length. 10M If the deflection at the free end is 40 mm, find the slope at the free end.

## UNIT-V

9 A cantilever beam of length 3m carries a uniformly distributed load of 80 kN/m over 10M the entire length. If  $E= 2 \times 10^8 \text{ kN/m}^2$  and  $I=1 \times 10^8 \text{ mm}^4$ , find the slope and deflection at the free end using conjugate beam method.

## )R

10 A solid shaft of 200 mm diameter has the same cross sectional area as that of a hollow shaft of the same material with inside diameter of 150 mm. Find the ratio of the power transmitted by the hollow shaft by the same speed.

\*\*\* END \*\*\*